Entourage Effect: Full-Spectrum Vs. Isolate

A Fuller Range of Benefits.

What is the Entourage Effect and why should you choose Full-Spectrum CBD? While CBD by itself is fantastic, using only CBD may mean missing out on the full benefits found in hemp & cannabis sourced compounds.

For instance, did you know that THC & CBD are just 2 of more than 100 different cannabinoids? All animals have an “endocannabinoid system” or “ECS”, and all animals naturally produce cannabinoids.

entourage effect

The cannabinoids we make in our bodies interact with the ECS to help regulate our pain, inflammation, immune systems, mood and thinking. Supplementing with plant-based cannabinoids, gives us the tools to help maintain constant homeostasis, that is balance in our bodies.

While CBD & THC are most common, there’s cannabinoids like CBDV, CBG, THCV, CBN, CBC, and etc. Each cannabinoid has its own unique benefits which you might not get only having CBD & THC. This is where full-spectrum CBD has its value.

What are the benefits of other Cannabinoids?

Beyond CBD:

While CBD can help manage as sleep, chronic pain and anxiety, it may not be as effective as other cannabinoids such as a full-spectrum formula with CBG, CBDV, or THCV might be for certain ailments.

CBG may have powerful antibacterial and anti-inflammatory properties, which could benefit issues such as IBS, colitis and acne.

CBDV may be highly effective as an anti-acne skincare agent and could have powerful neuroprotective effects for those suffering from nausea or epilepsy.

THCV, a rare and exclusive cannabinoid, may be a greater anxiety suppressant than CBD, in addition to potential benefits for weight-loss while also boosting mental clarity. When together with THC, THCV can have powerful synergestic effects that can enhance your high by decreasing the negative effects of THC while enhancing the positive benefits.

We eat for a whole variety of vitamins and nutrients, for the most complete range of benefits. We don’t aim to have just one vitamin. A balanced diet and healthy lifestyle means having a variety of cannabinoids for the greatest range of benefits – which means having a full-spectrum CBD formula. Having many cannabinoids at once will also create a synergestic “Entourage Effect.”

entourage effect

What is the Entourage Effect?

When you mix CBD, CBG, CBDV, THCV and more together..

When cannabinoids are taken together, they can enhance the effects of each other. This is called the Entourage Effect. Cannabinoids are also enhanced by other plant compounds such as terpenes (smell & flavour compounds found in fruits).

When taken together (like in Full-Spectrum CBD), Cannabinoids & Terpenes can create a powerful synergestic entourage effect by:

  • Amplifying the effects of each other.
  • Balancing out the negative effects of each other.
  • Making up for what the other is lacking in benefits.

A Balancing Act

entourage effect

While THC has many benefits, using only THC has been linked to negative effects such as increased anxiety, risk of psychosis, increased depression, and of course, increased appetite. Long-term use has also been linked to reduced concentration, decreased short-term memory and impaired motor skills.

This may be because in nature THC doesn’t normally occur all by itself. Rather, it usually comes with CBD in wild cannabis plants. It’s this CBD that helps to counteract the negative effects of THC such as anxiety and paranoia – effectively “balancing it out”. It’s the entourage effect happening naturally!

If you’ve been around long time users of cannabis, you’ve probably heard some along the lines of “weed these days is too strong” and in fact they probably have a point!

As growers compete to create the most mind-blasting cannabis, THC levels in weed are rising with CBD levels falling. In one study, the ratio of THC to CBD was found to have increased from as much as 14 times to 80 times since 1995. The result is cannabis that creates a stronger high, with less CBD and other cannabinoids (CBDV, CBG, THCV), to balance out the THC.

So as growers breed cannabis with less and less CBD, Full-Spectrum CBD has become even more important to balance out the increasing levels of THC with through the entourage effect with CBD.

Synergize with Terpenes.

entourage effect

The Entourage Effect – Eat Fruits to Enhance Your CBD Experience!

In addition to cannabinoids, there are many plant compounds that can modulate and enhance the entourage effect of Full-Spectrum CBD.

Terpenes are responsible for the taste and smell of plants like fruits, vegetables and flowers. In cannabis, they’re what distinguishes each strain from the other. Terpenes are why lemons taste and smells like lemons, and why strawberries taste and smell like strawberries. Terpenes are naturally produced in plants and may have direct, synergistic benefits when taken with cannabinoids in full-spectrum CBD.

entourage effect

Where can you get some? Three common terpenes include caryophyllene, limonene and myrcene, which you can find in just about any kitchen. 

Caryophyllene is found in herbs and spices like black pepper, basil, oregano and of course in cannabis. It’s that spicey, powerful scent that can food its kick. Caryophyllene has been suggested to have anti-anxiety, anti-inflammatory and antioxidant effects.

Limonene is responsible for the distinct, citrus smell in fruits like lemons, oranges and limes and in cannabis strains like Lemon Haze. Limonene has been suggested to have anti-inflammatory, anti-anxiety, pain-relief, relaxative and antioxidant effects.

Myrcene is responsible for the sweet, tangy smell of fruits like mangoes and nectarines, and the scent in strains like Blue Dream and Sour Diesel. Myrcene can also be found in plants like bay leaves, hops, lemon grass, basil and rosemary. Myrcene has the synergistic effect of enhancing and strengthening the effect of THC, as it “allows more THC to reach brain cells.” Myrcene has also been suggested to have anti-pain, anti-inflammatory and sleep benefits.

In conclusion, by supplementing your Full-Spectrum CBD with natural foods, you can add boost your Entourage Effect with terpenes found in common household foods.

How Can I Experience the Entourage Effect?

Bottled in BC and made with all-natural ingredients, our Premium Full-Spectrum Oil Tincture delivers a revolutionary blend of CBD, CBG, CBDV and THCV for a more complete range of benefits. If you’re looking to experience the entourage effect our full-spectrum tincture is the perfect option for Canadians!


*Our goal is to deliver affordable cannabinoids to those need. We offer big savings through our assistance program for those with COVID Relief, veterans, students, disability, low-income status, and public safety workers.



Relief for Neuropathic / Chronic Pain

Mandolini, G. M., Lazzaretti, M., Pigoni, A., Oldani, L., Delvecchio, G., & Brambilla, P. (2018). Pharmacological properties of cannabidiol in the treatment of psychiatric disorders: a critical overview. Epidemiology and psychiatric sciences, 1-9.


Mücke, M., Phillips, T., Radbruch, L., Petzke, F., & Häuser, W. (2018). Cannabis‐based medicines for chronic neuropathic pain in adults. The Cochrane Library.


Jensen, B., Chen, J., Furnish, T., & Wallace, M. (2015). Medical marijuana and chronic pain: a review of basic science and clinical evidence. Current pain and headache reports19(10), 50.


Burns, T. L., & Ineck, J. R. (2006). Cannabinoid analgesia as a potential new therapeutic option in the treatment of chronic pain. Annals of Pharmacotherapy40(2), 251-260.


Brunt, T. M., van Genugten, M., Höner-Snoeken, K., van de Velde, M. J., & Niesink, R. J. (2014). Therapeutic satisfaction and subjective effects of different strains of pharmaceutical-grade cannabis. Journal of clinical psychopharmacology34(3), 344-349.


Sleep Disorders

Babson, K. A., Sottile, J., & Morabito, D. (2017). Cannabis, cannabinoids, and sleep: a review of the literature. Current psychiatry reports19(4), 23.


Fitzcharles, M. A., Baerwald, C., Ablin, J., & Häuser, W. (2016). Efficacy, tolerability and safety of cannabinoids in chronic pain associated with rheumatic diseases (fibromyalgia syndrome, back pain, osteoarthritis, rheumatoid arthritis). Der Schmerz30(1), 47-61.


Multiple Sclerosis

Iskedjian, M., Bereza, B., Gordon, A., Piwko, C., & Einarson, T. R. (2007). Meta-analysis of cannabis based treatments for neuropathic and multiple sclerosis-related pain. Current medical research and opinion23(1), 17-24.


Lakhan, S. E., & Rowland, M. (2009). Whole plant cannabis extracts in the treatment of spasticity in multiple sclerosis: a systematic review. BMC neurology9(1), 59.


Wade, D. T., Collin, C., Stott, C., & Duncombe, P. (2010). Meta-analysis of the efficacy and safety of Sativex (nabiximols), on spasticity in people with multiple sclerosis. Multiple Sclerosis Journal16(6), 707-714.


Wright, S., Duncombe, P., & Altman, D. G. (2012). Assessment of blinding to treatment allocation in studies of a cannabis-based medicine (Sativex®) in people with multiple sclerosis: a new approach. Trials13(1), 189.


McPartland, J. M., Guy, G. W., & Di Marzo, V. (2014). Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system. PloS one9(3), e89566.


Antioxidant Effects

Cuba, L. F., Salum, F. G., Cherubini, K., & Figueiredo, M. A. Z. (2017). Cannabidiol: an alternative therapeutic agent for oral mucositis?. Journal of clinical pharmacy and therapeutics42(3), 245-250.


Martin-Santos, R., Fagundo, A. B., Crippa, J. A., Atakan, Z., Bhattacharyya, S., Allen, P., … & McGuire, P. (2010). Neuroimaging in cannabis use: a systematic review of the literature. Psychological medicine40(3), 383-398.


Ashton, C. H., Moore, P. B., Gallagher, P., & Young, A. H. (2005). Cannabinoids in bipolar affective disorder: a review and discussion of their therapeutic potential. Journal of Psychopharmacology19(3), 293-300.


Antipsychotic Properties of CBD (Schizophrenia)

Iseger TA, Bossong MG (March 2015). “A systematic review of the antipsychotic properties of cannabidiol in humans”. Schizophrenia Research. 162 (1–3): 153–61.


Iseger, T. A., & Bossong, M. G. (2015). A systematic review of the antipsychotic properties of cannabidiol in humans. Schizophrenia research162(1-3), 153-161.


Bostwick, J. M. (2012, February). Blurred boundaries: the therapeutics and politics of medical marijuana. In Mayo Clinic Proceedings (Vol. 87, No. 2, pp. 172-186). Elsevier.


IBS / Gut Inflammation

Couch, D. G., Maudslay, H., Doleman, B., Lund, J. N., & O’Sullivan, S. E. (2018). The use of cannabinoids in colitis: a systematic review and meta-analysis. Inflammatory bowel diseases24(4), 680-697.



Stockings, E., Zagic, D., Campbell, G., Weier, M., Hall, W. D., Nielsen, S., … & Degenhardt, L. (2018). Evidence for cannabis and cannabinoids for epilepsy: a systematic review of controlled and observational evidence. J Neurol Neurosurg Psychiatry89(7), 741-753.


Reddy, D. S., & Golub, V. M. (2016). The pharmacological basis of cannabis therapy for epilepsy. Journal of Pharmacology and Experimental Therapeutics357(1), 45-55.


High Blood Pressure & Heart Rate

Sultan, S. R., Millar, S. A., England, T. J., & O’Sullivan, S. E. (2017). A systematic review and meta-analysis of the haemodynamic effects of Cannabidiol. Frontiers in pharmacology8, 81.



Hurd, Y. L., Yoon, M., Manini, A. F., Hernandez, S., Olmedo, R., Ostman, M., & Jutras-Aswad, D. (2015). Early phase in the development of cannabidiol as a treatment for addiction: opioid relapse takes initial center stage. Neurotherapeutics12(4), 807-815.


Prud’homme, M., Cata, R., & Jutras-Aswad, D. (2015). Cannabidiol as an intervention for addictive behaviors: a systematic review of the evidence. Substance abuse: research and treatment9, SART-S25081.


Anxiety & Depression

Marco, E. M., García-Gutiérrez, M. S., Bermúdez-Silva, F. J., Moreira, F., Guimarães, F., Manzanares, J., & Viveros, M. P. (2011). Endocannabinoid system and psychiatry: in search of a neurobiological basis for detrimental and potential therapeutic effects. Frontiers in behavioral neuroscience5, 63.


Zhornitsky, S., & Potvin, S. (2012). Cannabidiol in humans—the quest for therapeutic targets. Pharmaceuticals5(5), 529-552.


Crippa, J. A., Derenusson, G. N., Chagas, M. H., Atakan, Z., Martín-Santos, R., Zuardi, A. W., & Hallak, J. E. (2012). Pharmacological interventions in the treatment of the acute effects of cannabis: a systematic review of literature. Harm reduction journal9(1), 7.



Stern, C. A., Gazarini, L., Takahashi, R. N., Guimaraes, F. S., & Bertoglio, L. J. (2012). On disruption of fear memory by reconsolidation blockade: evidence from cannabidiol treatment. Neuropsychopharmacology37(9), 2132.



Liou, G. I. (2010). Diabetic retinopathy: role of inflammation and potential therapies for anti-inflammation. World journal of diabetes1(1), 12.


Weight Loss

Le Foll, B., Trigo, J. M., Sharkey, K. A., & Le Strat, Y. (2013). Cannabis and Δ 9-tetrahydrocannabinol (THC) for weight loss?. Medical hypotheses80(5), 564-567.



Gut Inflammation (Colitis)

Couch, D. G., Maudslay, H., Doleman, B., Lund, J. N., & O’Sullivan, S. E. (2018). The use of cannabinoids in colitis: a systematic review and meta-analysis. Inflammatory bowel diseases24(4), 680-697.



Borrelli, F., Fasolino, I., Romano, B., Capasso, R., Maiello, F., Coppola, D., … & Izzo, A. A. (2013). Beneficial effect of the non-psychotropic plant cannabinoid cannabigerol on experimental inflammatory bowel disease. Biochemical pharmacology85(9), 1306-1316.


Acne & Skin Diseases

Giacoppo, S., Gugliandolo, A., Trubiani, O., Pollastro, F., Grassi, G., Bramanti, P., & Mazzon, E. (2017). Cannabinoid CB2 receptors are involved in the protection of RAW264. 7 macrophages against the oxidative stress: an in vitro study. European journal of histochemistry: EJH61(1).


Pucci, M., Rapino, C., Di Francesco, A., Dainese, E., D’addario, C., & Maccarrone, M. (2013). Epigenetic control of skin differentiation genes by phytocannabinoids. British journal of pharmacology170(3), 581-591.


Neuroprotective Properties for Huntington's, Parkinson's & Alzheimer's

Fernández-Ruiz, J; Moro, M. A; Martínez-Orgado, J (2015). “Cannabinoids in Neurodegenerative Disorders and Stroke/Brain Trauma: From Preclinical Models to Clinical Applications”. Neurotherapeutics. 12 (4): 793–806. doi:10.1007/s13311-015-0381-7


Valdeolivas, S., Navarrete, C., Cantarero, I., Bellido, M. L., Muñoz, E., & Sagredo, O. (2015). Neuroprotective properties of cannabigerol in Huntington’s disease: studies in R6/2 mice and 3-nitropropionate-lesioned mice. Neurotherapeutics12(1), 185-199.



Smeriglio, A., Giofrè, S. V., Galati, E. M., Monforte, M. T., Cicero, N., D’Angelo, V., … & Circosta, C. (2018). Inhibition of aldose reductase activity by Cannabis sativa chemotypes extracts with high content of cannabidiol or cannabigerol. Fitoterapia127, 101-108.



Giacoppo, S., Gugliandolo, A., Trubiani, O., Pollastro, F., Grassi, G., Bramanti, P., & Mazzon, E. (2017). Cannabinoid CB2 receptors are involved in the protection of RAW264. 7 macrophages against the oxidative stress: an in vitro study. European journal of histochemistry: EJH61(1).



Appendino, G., Gibbons, S., Giana, A., Pagani, A., Grassi, G., Stavri, M., … & Rahman, M. M. (2008). Antibacterial cannabinoids from Cannabis sativa: a structure− activity study. Journal of natural products71(8), 1427-1430.



Wilkinson, J. D., & Williamson, E. M. (2007). Cannabinoids inhibit human keratinocyte proliferation through a non-CB1/CB2 mechanism and have a potential therapeutic value in the treatment of psoriasis. Journal of dermatological science45(2), 87-92.



Colasanti, B. K., Craig, C. R., & Allara, R. D. (1984). Intraocular pressure, ocular toxicity and neurotoxicity after administration of cannabinol or cannabigerol. Experimental eye research39(3), 251-259.



Baek, S. H., Kim, Y. O., Kwag, J. S., Choi, K. E., & Jung, W. Y. (1998). Boron trifluoride etherate on silica-A modified Lewis acid reagent (VII). Antitumor activity of cannabigerol against human oral epitheloid carcinoma cells. Archives of pharmacal research21(3), 353.


Borrelli, F., Pagano, E., Romano, B., Panzera, S., Maiello, F., Coppola, D., … & Izzo, A. A. (2014). Colon carcinogenesis is inhibited by the TRPM8 antagonist cannabigerol, a Cannabis-derived non-psychotropic cannabinoid. Carcinogenesis35(12), 2787-2797.




O’brien, L. D., Wills, K. L., Segsworth, B., Dashney, B., Rock, E. M., Limebeer, C. L., & Parker, L. A. (2013). Effect of chronic exposure to rimonabant and phytocannabinoids on anxiety-like behavior and saccharin palatability. Pharmacology Biochemistry and Behavior103(3), 597-602.



Jadoon, K. A., Ratcliffe, S. H., Barrett, D. A., Thomas, E. L., Stott, C., Bell, J. D., … & Tan, G. D. (2016). Efficacy and safety of cannabidiol and tetrahydrocannabivarin on glycemic and lipid parameters in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel group pilot study. Diabetes Care, dc160650.


Horváth, B., Mukhopadhyay, P., Haskó, G., & Pacher, P. (2012). The endocannabinoid system and plant-derived cannabinoids in diabetes and diabetic complications. The American journal of pathology180(2), 432-442.


Wargent, E. T., Zaibi, M. S., Silvestri, C., Hislop, D. C., Stocker, C. J., Stott, C. G., … & Cawthorne, M. A. (2013). The cannabinoid Δ 9-tetrahydrocannabivarin (THCV) ameliorates insulin sensitivity in two mouse models of obesity. Nutrition & diabetes3(5), e68.



Deiana, S., Watanabe, A., Yamasaki, Y., Amada, N., Arthur, M., Fleming, S., … & Platt, B. (2012). Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ 9-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive–compulsive behaviour. Psychopharmacology219(3), 859-873.


Neuroprotective Effects for Parkinson's

García C, Palomo-Garo C, García-Arencibia M, Ramos J, Pertwee R, Fernández-Ruiz J. Symptom-relieving and neuroprotective effects of the phytocannabinoid Δ9-THCV in animal models of Parkinson’s disease. British Journal of Pharmacology. 2011;163(7):1495-1506. doi:10.1111/j.1476-5381.2011.01278.x.


THC Antagonist

Thomas, A., Stevenson, L. A., Wease, K. N., Price, M. R., Baillie, G., Ross, R. A., & Pertwee, R. G. (2005). Evidence that the plant cannabinoid Δ9‐tetrahydrocannabivarin is a cannabinoid CB1 and CB2 receptor antagonist. British journal of pharmacology146(7), 917-926.


Pertwee, R. G., Thomas, A., Stevenson, L. A., Ross, R. A., Varvel, S. A., Lichtman, A. H., … & Razdan, R. K. (2007). The psychoactive plant cannabinoid, Δ9‐tetrahydrocannabinol, is antagonized by Δ8‐and Δ9‐tetrahydrocannabivarin in mice in vivo. British journal of pharmacology150(5), 586-594.


Pertwee, R. G. (2008). The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9‐tetrahydrocannabinol, cannabidiol and Δ9‐tetrahydrocannabivarin. British journal of pharmacology153(2), 199-215.


Ma, Y. L., Weston, S. E., Whalley, B. J., & Stephens, G. J. (2008). The phytocannabinoid Δ9‐tetrahydrocannabivarin modulates inhibitory neurotransmission in the cerebellum. British journal of pharmacology154(1), 204-215.



Izzo, A. A., Borrelli, F., Capasso, R., Di Marzo, V., & Mechoulam, R. (2009). Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends in pharmacological sciences30(10), 515-527.


Hill, A. J., Weston, S. E., Jones, N. A., Smith, I., Bevan, S. A., Williamson, E. M., … & Whalley, B. J. (2010). Δ9‐Tetrahydrocannabivarin suppresses in vitro epileptiform and in vivo seizure activity in adult rats. Epilepsia51(8), 1522-1532.



Bátkai, S., Mukhopadhyay, P., Horváth, B., Rajesh, M., Gao, R. Y., Mahadevan, A., … & Maccarrone, M. (2012). Δ8‐Tetrahydrocannabivarin prevents hepatic ischaemia/reperfusion injury by decreasing oxidative stress and inflammatory responses through cannabinoid CB2 receptors. British journal of pharmacology165(8), 2450-2461.


Bolognini, D., Costa, B., Maione, S., Comelli, F., Marini, P., Di Marzo, V., … & Pertwee, R. G. (2010). The plant cannabinoid Δ9‐tetrahydrocannabivarin can decrease signs of inflammation and inflammatory pain in mice. British journal of pharmacology160(3), 677-687.


Neurodegenerative Diseases

Hill, A. J., Williams, C. M., Whalley, B. J., & Stephens, G. J. (2012). Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacology & therapeutics133(1), 79-97.



Cascio, M. G., Zamberletti, E., Marini, P., Parolaro, D., & Pertwee, R. G. (2015). The phytocannabinoid, Δ9‐tetrahydrocannabivarin, can act through 5‐HT1A receptors to produce antipsychotic effects. British journal of pharmacology172(5), 1305-1318.


Acne & Skin Treatment

Oláh, A., Markovics, A., Szabó‐Papp, J., Szabó, P. T., Stott, C., Zouboulis, C. C., & Bíró, T. (2016). Differential effectiveness of selected non‐psychotropic phytocannabinoids on human sebocyte functions implicates their introduction in dry/seborrhoeic skin and acne treatment. Experimental dermatology25(9), 701-707.



Anticonvulsant Effects for Epilepsy

Amada N, Yamasaki Y, Williams CM, Whalley BJ (2013). “Cannabidivarin (CBDV) suppresses pentylenetetrazole (PTZ)-induced increases in epilepsy-related gene expression”. PeerJ. 1: e214. doi:10.7717/peerj.214


Iannotti, F. A., Hill, C. L., Leo, A., Alhusaini, A., Soubrane, C., Mazzarella, E., … & Stephens, G. J. (2014). Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal hyperexcitability. ACS chemical neuroscience5(11), 1131-1141.


Hill, A. J., Mercier, M. S., Hill, T. D. M., Glyn, S. E., Jones, N. A., Yamasaki, Y., … & Williams, C. M. (2012). Cannabidivarin is anticonvulsant in mouse and rat. British journal of pharmacology167(8), 1629-1642.


Rosenberg, E. C., Patra, P. H., & Whalley, B. J. (2017). Therapeutic effects of cannabinoids in animal models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection. Epilepsy & Behavior70, 319-327.


Gaston, T. E., & Friedman, D. (2017). Pharmacology of cannabinoids in the treatment of epilepsy. Epilepsy & Behavior70, 313-318.


Hill, T. D. M., Cascio, M. G., Romano, B., Duncan, M., Pertwee, R. G., Williams, C. M., … & Hill, A. J. (2013). Cannabidivarin‐rich cannabis extracts are anticonvulsant in mouse and rat via a CB1 receptor‐independent mechanism. British journal of pharmacology170(3), 679-692.



Rosenberg, E. C., Tsien, R. W., Whalley, B. J., & Devinsky, O. (2015). Cannabinoids and epilepsy. Neurotherapeutics12(4), 747-768.


Acne & Skin Diseases

Oláh, A., Markovics, A., Szabó‐Papp, J., Szabó, P. T., Stott, C., Zouboulis, C. C., & Bíró, T. (2016). Differential effectiveness of selected non‐psychotropic phytocannabinoids on human sebocyte functions implicates their introduction in dry/seborrhoeic skin and acne treatment. Experimental dermatology25(9), 701-707.


Neurodegenerative Diseases

Hill, A. J., Williams, C. M., Whalley, B. J., & Stephens, G. J. (2012). Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacology & therapeutics133(1), 79-97.


    Your Cart
    Your cart is emptyReturn to Shop
      Calculate Shipping
      Apply Coupon